4.6 – Steam Tables


4.6.0 – Learning Objectives

By the end of this section you should be able to:

  1. Understand what steam tables tell us.
  2. Use steam tables to solve thermodynamic problems.
  3. Interpolate between data points.

4.6.1 – Introduction

Water, and in specific, steam is used in many processes. Most commonly, it is used in the transfer of energy. Because of this, scientist and engineers have created extensive data tables on a variety of conditions.


4.6.2 – Table Description

Shown below is a saturated steam table. A saturated steam table will include data of both the liquid and vapour phases of water at a given temperature and pressure.

In [2]:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

df = pd.read_excel('../figures/Module-4/SatTandPofSteam.xlsx', sheet_name='Sheet2', index_col=None, na_values=['NA'])
df.head(20)
Out[2]:
Temperature (C) Pressure (MPa) Volume (l, m3/kg) Volume (v, m3/kg) Internal Energy (l, kJ/kg) Δ Internal Energy of Vapourization (kJ/kg) Internal Energy (v, kJ/kg) Enthalpy (l, kJ/kg) Δ Enthalpy of Vapourization (kJ/kg) Enthalpy (v, kJ/kg) Entropy (l, J/g*K) Δ Entropy of Vapourization (kJ/kg) Entropy (v, J/g*K)
0 0.01 0.000612 0.001000 205.9900 0.000 2374.900 2374.9 0.000 2500.900 2500.9 0.000000 9.155500 9.1555
1 5.00 0.000873 0.001000 147.0100 21.019 2360.781 2381.8 21.020 2489.080 2510.1 0.076254 8.948546 9.0248
2 10.00 0.001228 0.001000 106.3000 42.020 2346.580 2388.6 42.021 2477.179 2519.2 0.151090 8.748710 8.8998
3 15.00 0.001706 0.001001 77.8750 62.980 2332.520 2395.5 62.981 2465.319 2528.3 0.224460 8.555840 8.7803
4 20.00 0.002339 0.001002 57.7570 83.912 2318.388 2402.3 83.914 2453.486 2537.4 0.296480 8.369520 8.6660
5 25.00 0.003170 0.001003 43.3370 104.830 2304.270 2409.1 104.830 2441.670 2546.5 0.367220 8.189380 8.5566
6 30.00 0.004247 0.001004 32.8780 125.730 2290.170 2415.9 125.730 2429.770 2555.5 0.436750 8.015250 8.4520
7 35.00 0.005629 0.001006 25.2050 146.630 2276.070 2422.7 146.630 2417.870 2564.5 0.505130 7.846570 8.3517
8 40.00 0.007385 0.001008 19.5150 167.530 2261.870 2429.4 167.530 2405.970 2573.5 0.572400 7.683100 8.2555
9 45.00 0.009595 0.001010 15.2520 188.430 2247.670 2436.1 188.430 2393.970 2582.4 0.638610 7.524690 8.1633
10 50.00 0.012352 0.001012 12.0270 209.330 2233.370 2442.7 209.340 2381.960 2591.3 0.703810 7.370990 8.0748
11 55.00 0.015762 0.001015 9.5643 230.240 2219.060 2449.3 230.260 2369.840 2600.1 0.768020 7.221780 7.9898
12 60.00 0.019946 0.001017 7.6672 251.160 2204.740 2455.9 251.180 2357.620 2608.8 0.831290 7.076810 7.9081
13 65.00 0.025042 0.001020 6.1935 272.090 2190.310 2462.4 272.120 2345.380 2617.5 0.893650 6.935950 7.8296
14 70.00 0.031201 0.001023 5.0395 293.030 2175.870 2468.9 293.070 2333.030 2626.1 0.955130 6.798870 7.7540
15 75.00 0.038595 0.001026 4.1289 313.990 2161.210 2475.2 314.030 2320.570 2634.6 1.015800 6.665400 7.6812
16 80.00 0.047414 0.001029 3.4052 334.960 2146.640 2481.6 335.010 2307.990 2643.0 1.075600 6.535500 7.6111
17 85.00 0.057867 0.001032 2.8258 355.950 2131.850 2487.8 356.010 2295.290 2651.3 1.134600 6.408800 7.5434
18 90.00 0.070182 0.001036 2.3591 376.970 2117.030 2494.0 377.040 2282.460 2659.5 1.192900 6.285200 7.4781
19 95.00 0.084608 0.001040 1.9806 398.000 2102.000 2500.0 398.090 2269.510 2667.6 1.250400 6.164700 7.4151

Another type of table is a super heated steam table at a given pressure. Here is an example of this type table.

In [3]:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

df = pd.read_excel('../figures/Module-4/Steam_3MPa.xlsx', sheet_name='Sheet2', index_col=None, na_values=['NA'])
df
Out[3]:
Temperature (C) Pressure (MPa) Volume (m3/kg) Internal Energy (kJ/kg) Enthalpy (kJ/kg) Entropy (J/g*K)
0 233.85 3 0.066664 2603.2 2803.2 6.1856
1 250.00 3 0.070627 2644.7 2856.5 6.2893
2 300.00 3 0.081179 2750.8 2994.3 6.5412
3 350.00 3 0.090556 2844.4 3116.1 6.7449
4 400.00 3 0.099379 2933.5 3231.7 6.9234
5 450.00 3 0.107890 3021.2 3344.8 7.0856
6 500.00 3 0.116200 3108.6 3457.2 7.2359
7 550.00 3 0.124370 3196.6 3569.7 7.3768
8 600.00 3 0.132450 3285.5 3682.8 7.5103
9 650.00 3 0.140450 3375.6 3796.9 7.6373
10 700.00 3 0.148410 3467.0 3912.2 7.7590
11 750.00 3 0.156320 3559.9 4028.9 7.8758
12 800.00 3 0.164200 3654.3 4146.9 7.9885
13 850.00 3 0.172050 3750.3 4266.5 8.0973
14 900.00 3 0.179880 3847.9 4387.5 8.2028
15 950.00 3 0.187690 3947.0 4510.1 8.3051
16 1000.00 3 0.195490 4047.7 4634.1 8.4045

4.6.4 – Interpolation

Let’s suppose you wanted to find out what the internal energy of steam is at \(725.00 ^{\circ} C\) and \(3.0000 \space \text{MPa}\). Since the value is not given in the table, you must interpolate. The formula for interpolation is:

\[y = \frac{y_2 - y_1}{x_2 - x_1} (x - x_1) + y_1\]

In this case the formula for internal energy at \(725.00 ^{\circ} C\) is:

\[U_{3 MPa, 725 C} = \frac{U_{3 MPa, 750 C} - U_{3 MPa, 700 C}}{T_2 - T_1} (T - T_1) + U_{3 MPa, 700 C}\]

and the answer is:

\[U_{3 MPa, 725 C} = \frac{(3559.9 - 3467.0 ) \space kJ/kg}{(750 - 700) \space C} (725 - 700) \space C + 3467.0 \space kJ/kg = 3513.45 \space kJ/kg\]

4.6.5 – Problem Statement

Question

Using the steam tables below, find the change in internal energy when steam is first cooled isobarically at \(750.00 ^{\circ} C\) and \(5.0000 \space \text{MPa}\) to \(725.00 ^{\circ} C \space\) and \(5.0000 \space \text{MPa}\) and then expanded isothermally at \(725.00 ^{\circ} C\) from \(5.0000 \space \text{MPa}\) to \(1.0000 \space \text{MPa}\).

In [4]:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

df = pd.read_excel('../figures/Module-4/Steam_5MPa.xlsx', sheet_name='Sheet2', index_col=None, na_values=['NA'])
df
Out[4]:
Temperature (C) Pressure (MPa) Volume (m3/kg) Internal Energy (kJ/kg) Enthalpy (kJ/kg) Entropy (J/g*K)
0 263.94 5 0.039446 2597.0 2794.2 5.9737
1 300.00 5 0.045346 2699.0 2925.7 6.2110
2 350.00 5 0.051969 2809.5 3069.3 6.4516
3 400.00 5 0.057837 2907.5 3196.7 6.6483
4 450.00 5 0.063323 3000.6 3317.2 6.8210
5 500.00 5 0.068583 3091.7 3434.7 6.9781
6 550.00 5 0.073694 3182.4 3550.9 7.1237
7 600.00 5 0.078704 3273.3 3666.8 7.2605
8 650.00 5 0.083639 3365.0 3783.2 7.3901
9 700.00 5 0.088518 3457.7 3900.3 7.5136
10 750.00 5 0.093355 3551.6 4018.4 7.6320
11 800.00 5 0.098158 3646.9 4137.7 7.7458
12 850.00 5 0.102930 3743.6 4258.3 7.8556
13 900.00 5 0.107690 3841.8 4380.2 7.9618
14 950.00 5 0.112420 3941.5 4503.6 8.0648
15 1000.00 5 0.117150 4042.6 4628.3 8.1648
In [5]:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

df = pd.read_excel('../figures/Module-4/Steam_1MPa.xlsx', sheet_name='Sheet2', index_col=None, na_values=['NA'])
df
Out[5]:
Temperature (C) Pressure (MPa) Volume (m3/kg) Internal Energy (kJ/kg) Enthalpy (kJ/kg) Entropy (J/g*K)
0 179.88 1 0.19436 2582.7 2777.1 6.5850
1 200.00 1 0.20602 2622.2 2828.3 6.6955
2 250.00 1 0.23275 2710.4 2943.1 6.9265
3 300.00 1 0.25799 2793.6 3051.6 7.1246
4 350.00 1 0.28250 2875.7 3158.2 7.3029
5 400.00 1 0.30661 2957.9 3264.5 7.4669
6 450.00 1 0.33045 3040.9 3371.3 7.6200
7 500.00 1 0.35411 3125.0 3479.1 7.7641
8 550.00 1 0.37766 3210.5 3588.1 7.9008
9 600.00 1 0.40111 3297.5 3698.6 8.0310
10 650.00 1 0.42449 3386.0 3810.5 8.1557
11 700.00 1 0.44783 3476.2 3924.1 8.2755
12 750.00 1 0.47112 3568.1 4039.3 8.3909
13 800.00 1 0.49438 3661.7 4156.1 8.5024
14 850.00 1 0.51762 3757.0 4274.6 8.6103
15 900.00 1 0.54083 3853.9 4394.8 8.7150
16 950.00 1 0.56403 3952.5 4516.5 8.8166
17 1000.00 1 0.58721 4052.7 4639.9 8.9155

Answer

The internal energy at \(750.00 ^{\circ} C\) and \(5.0000 \space \text{MPa}\) is

\[U_{5 MPa, 750 C} = 3511.6 \space kJ/kg\]

Since \(725.00 ^{\circ} C\) is not present in the first table, we must interpolate

\[U_{5 MPa, 725 C} = \frac{U_{5 MPa, 750 C} - U_{5 MPa, 700 C}}{T_2 - T_1} (T - T_1) + U_{5 MPa, 700 C}\]
\[U_{5 MPa, 725 C} = \frac{(3511.6 - 3457.7 ) \space kJ/kg}{(750 - 700) \space C} (725 - 700) \space C + 3457.7 \space kJ/kg\]
\[U_{5 MPa, 725 C} = 3,484.65 \space kJ/kg\]

now that we have \(U_{5 MPa, 725 C}\), we must find \(U_{1 MPa, 725 C}\) using interpolation

\[U_{1 MPa, 725 C} = \frac{U_{1 MPa, 750 C} - U_{1 MPa, 700 C}}{T_2 - T_1} (T - T_1) + U_{1 MPa, 700 C}\]
\[U_{1 MPa, 725 C} = \frac{(3568.1 - 3476.2 ) \space kJ/kg}{(750 - 700) \space C} (725 - 700) \space C + 3476.2 \space kJ/kg\]
\[U_{1 MPa, 725 C} = 3,522.15 \space kJ/kg\]

Now that we have all the necessary values, we just need to sum the changes in internal energy

\[\Delta U_{tot} = \Delta U_{1} + \Delta U_{2} = (U_{5 MPa, 725 C} - U_{5 MPa, 750 C}) + (U_{1 MPa, 725 C} - U_{5 MPa, 725 C})\]
\[\Delta U_{tot} = (3,484.65 \space kJ/kg - 3551.6 \space kJ/kg) + (3,522.15 \space kJ/kg - 3,484.65 \space kJ/kg)\]
\[\Delta U_{tot} = -10.6 \space kJ/kg\]
In [ ]: